Tampilkan postingan dengan label soal maraton soshum. Tampilkan semua postingan
Tampilkan postingan dengan label soal maraton soshum. Tampilkan semua postingan

Soal Maraton Keempat LPC Soshum

Nomor 1. Soal SBMPTN 2016 MatDas Kode 345/99
Diketahui $ 7 - \sqrt{7} $ adalah salah satu akar $ x^2 + ax + b = 0 $ dengan $ b $ bilangan real negatif dan $ a $ suatu bilangan bulat. Nilai terkecil $ a $ adalah ....
A). $ -5 \, $ B). $ -4 \, $ C). $ 0 \, $ D). $ 4 \, $ E). $ 5 $

Nomor 2. Soal UM UGM 2003 MatDas/96
Jika $ x_1 $ dan $ x_2 $ penyelesaian dari persamaan $ \sqrt{2x-5}=1 + \sqrt{x - 3} $, maka $ x_1 + x_2 $ adalah ....
A). $ 4 \, $ B). $ 6 \, $ C). $ 10 \, $ D). $ 12 \, $ E). $ 14 \, $

Nomor 3. Soal SIMAK UI 2009 MatDas Kode 941/71
Misalkan kurva $ y = x^2 - (a-1)x + 6 $ dan $ y = x - 10 $ berpotongan di dua titik yang berbeda, maka nilai $ a $ yang memenuhi adalah ......
A). $ -8 \leq a \leq 8 \, $
B). $ a \leq -8 \, $ atau $ a \geq 8 $
C). $ a < -8 \, $ atau $ a > 8 $
D). $ -8 < a < 8 \, $
E). $ -6 < a < 10 $

Nomor 4. Soal SIMAK UI 2009 MatDas Kode 931/70
Misalkan fungsi kuadrat $ y = (t+1)x^2 - tx $ berpotongan dengan garis $ y = tx + (4-t) $ . Jika kurva fungsi kuadrat tersebut terbuka ke atas, maka nilai $ t $ yang memenuhi adalah ......
A). $ -\frac{4}{3} \leq t \leq -1 \, $
B). $ t \geq -\frac{4}{3} \, $
C). $ t < -\frac{4}{3} \, $
D). $ -\frac{4}{3} < t < -1 \, $
E). $ t > -1 $

Nomor 5. Soal UM UGM 2018 Matdas kode 286/123
Himpunan semua bilangan real $ x > 1 $ yang memenuhi $ \frac{x^2-3x+4}{-x+3}>x $ adalah $ \{x | x \in R , a < x < b \} $ . Nilai $ a + b = ... $
A). $ 2 \, $ B). $ 3 \, $ C). $ 4 \, $ D). $ 5 \, $ E). $ 6 $

Nomor 6. Soal SBMPTN 2018 MatDas Kode 527/120
Jika $ f(x) = \frac{1}{(x-1)^2} $ dan $ g(x) = \frac{1}{x-2} $ , maka himpunan penyelesaian $ \frac{f(x)g(x)}{(f \circ g)(x)} < 0 $ adalah ...
A). $ \{ x | x < 1 \text{ atau } x > 3 \} \, $
B). $ \{ x | x < 1 \text{ atau } 2 < x < 3 \} \, $
C). $ \{ x | x < 1 \text{ atau } 1 < x < 2 \} \, $
D). $ \{ x | 1 < x < 2 \text{ atau } x > 3 \} \, $
E). $ \{ x | 2 < x < 3 \text{ atau } x > 3 \} \, $

Soal Maraton Ketiga LPC Soshum

Nomor 1. Soal SBMPTN 2016 MatDas Kode 350/103
Jika akar-akar $ 3x^2 + ax - 2 = 0 $ dan $ 2x^2 + 6x + 3b = 0 $ saling berkebalikan, maka $ b - a = .... $
A). $ -7 \, $ B). $ -5 \, $ C). $ 5 \, $ D). $ 6 \, $ E). $ 7 $

Nomor 2. Soal SBMPTN 2016 MatDas Kode 348/101
Misalkan $ m $ dan $ n $ adalah bilangan bulat negatif dan merupakan akar-akar persamaan $ x^2 + 12x - a = 0 $ , maka nilai $ a $ agar $ mn $ maksimum adalah ....
A). $ 36 \, $ B). $ 11 \, $ C). $ 12 \, $ D). $ -11 \, $ E). $ -36 $

Nomor 3. Soal SBMPTN 2016 MatDas Kode 346/100
Misalkan $ m $ dan $ n $ adalah bilangan bulat dan merupakan akar-akar persamaan $ x^2 - bx - 32 = 0 $ , maka nilai $ b $ agar $ m + n $ minimum adalah ....
A). $ -33 \, $ B). $ -31 \, $ C). $ 14 \, $ D). $ 31 \, $ E). $ 33 $

Nomor 4. Soal UM UGM 2018 Matdas kode 286/81
Garis singgung kurva $ f(x) = ax^2 + bx + c $ di titik $ (-1,a) $ melalui titik $ (0,3) $. Jika jumlah kuadrat akar-akarnya sama dengan $ 3 $ dan $ a < 0 $, maka $ b = ...$
A). $ -\frac{3}{2} \, $ B). $ -\frac{2}{3} \, $ C). $ \frac{2}{3} \, $ D). $ 1 \, $ E). $ \frac{3}{2} $

Nomor 5. Soal SBMPTN 2018 MatDas Kode 550/78
Jika grafik parabola $ f(x) = ax^2 + bx + c $ memotong sumbu Y pada titik $ (0,4) $, serta memotong garis $ y = x - 2 $ di titik $ x = 1 $ dan $ x = 6 $, maka koordinat titik puncak parabola tersebut adalah ...
A). $ (3,5) \, $ B). $ (-3,5) \, $ C). $ (3,-5) \, $ D). $ (2,-5) \, $ E). $ (-2,5) $

Nomor 6. Soal SIMAK UI 2009 MatDas Kode 951/73
Diberikan fungsi $ f(x) = ax^2 + bx + c $. Jika grafik fungsi tersebut melalui titik $ (2,21) $ dan mempunyai garis singgung yang sejajar dengan sumbu $ x $ pada $ (-2,-11) $ , maka nilai $ a + b + c $ adalah ......
A). $ 4 \, $ B). $ 5 \, $ C). $ 6 \, $ D). $ 7 \, $ E). $ 8 \, $

Soal Maraton Kedua LPC Soshum

Nomor 1. Soal SIMAK UI 2009 MatDas Kode 931/106
Jika $ p $ dan $ q $ adalah akar-akar persamaan kuadrat $ 3x^2 + 6x + 4 = 0 $ , maka persamaan kuadrat yang mempunyai akar-akar $ (2p+q+1) $ dan $ ( p + 2q + 1 ) $ adalah ......
A). $ x^2 + 4x + 3 = 0 \, $
B). $ x^2 + 4x + 7 = 0 \, $
C). $ 3x^2 + 12x + 13 = 0 \, $
D). $ x^2 - 8x + 19 = 0 \, $
E). $ 3x^2 - 24x + 49 = 0 \, $

Nomor 2. Soal SIMAK UI 2009 MatDas Kode 921/105
Misalkan selisih kuadrat akar-akar persamaan $ x^2 - (2m + 4)x + 8m = 0 $ sama dengan 20, maka nilai $ m^2 - 4 = ...... $
A). $ -9 \, $ B). $ -5 \, $ C). $ 0 \, $ D). $ 5 \, $ E). $ 9 $

Nomor 3. Soal SIMAK UI 2009 MatDas Kode 911/104
Akar-akar persamaan $ 2x^2 - ax - 2 = 0 $ adalah $ x_1 $ dan $ x_2 $. Jika $ x_1^2 - 2x_1x_2 + x_2^2 = -2a $ , maka nilai $ a = ..... $
A). $ -8 \, $ B). $ -4 \, $ C). $ 0 \, $ D). $ 4 \, $ E). $ 8 \, $

Nomor 4. Soal UM UGM 2018 Matdas kode 585/83
Diketahui garis $ y = c - x $ memotong kurva $ y = ax^2 + bx - c $ dengan $ a \neq 0 $ di titik $ (-2,5) $. Jika kurva tersebut simetris terhadap garis $ x = 1 $ , maka nilai $ a + b + c $ adalah ...
A). $ 1 \, $ B). $ 2 \, $ C). $ 3 \, $ D). $ 4 \, $ E). $ 5 $

Nomor 5. Soal SBMPTN 2018 MatDas Kode 517/75
Titik $ (a,b) $ terletak pada grafik $ y = bx^2 + (1-b^2)x - 49 $. Jika $ ab=6 $ , maka nilai $ a - b $ adalah ...
A). $ 7 \, $ B). $ 5 \, $ C). $ 1 \, $ D). $ -1 \, $ E). $ -5 $

Nomor 6. Soal SIMAK UI 2009 MatDas Kode 961/6
Jika grafik dari suatu fungsi kuadrat $ f(x) $ dengan $ f(0) = -4 $ mempunyai sumbu simetri di $ x = \frac{1}{2} $ dan mencapai nilai maksimum $ - 3 $ , maka $ f(x) = ... $
A). $ -16x^2 + 8x - 4 \, $ B). $ -10x^2 + 10x - 4 \, $
C). $ -4x^2 + 4x - 4 \, $ D). $ x^2 - x - 4 \, $
E). $ 4x^2 - 4x - 4 \, $

Soal Maraton Pertama LPC Soshum

Nomor 1. Soal UM UGM 2018 MatDas 585/114
Persamaan kuadrat $ 3x^2 + 8x - c = 0 $ mempunyai akar-akar $ x_1 $ dan $ x_2 $ dengan $ x_1 = -\frac{1}{x_2} $ . Jika $ x_1 > x_2 $ , maka persamaan kuadrat baru yang akar-akarnya $ \frac{1}{x_1+1} $ dan $ \frac{1}{x_2 - 2} $ adalah ...
A). $ 10x^2 - 11x - 3 = 0 \, $
B). $ 10x^2 + 11x + 3 = 0 \, $
C). $ 20x^2 - 11x - 3 = 0 \, $
D). $ 20x^2 + 11x + 3 = 0 \, $
E). $ 20x^2 - 11x + 3 = 0 \, $

Nomor 2. Soal UM UGM 2018 MatDas 286/113
Jika $ a > 0 $ dan selisih akar-akar persamaan kuadrat $ 5x^2 - 10ax + 8a = 0 $ sama dengan 3, maka $ a^2 - a = ...$
A). $ 1\frac{1}{9} \, $ B). $ 3\frac{3}{4} \, $ C). $ 4\frac{4}{9} \, $ D). $ 7\frac{1}{2} \, $ E). $ 8\frac{3}{4} $

Nomor 3. Soal SBMPTN 2018 MatDas 550/112
Jika semua akar dari persamaan $ x^2 - ax + b(b+1) = 0 $ merupakan bilangan prima untuk suatu bilangan positif $ a $ dan $ b $, maka $ a + b $ adalah ...
A). $ 4 \, $ B). $ 5 \, $ C). $ 6 \, $ D). $ 7 \, $ E). $ 8 $

Nomor 4. Soal SBMPTN 2018 MatDas 526/110
Diketahui $ x_1 $ dan $ x_2 $ merupakan akar-akar $ x^2 + 2ax + b^2 = 0 $. Jika $ x_1^2 + x_2^2 = 10 $ , maka nilai $ b^2 $ adalah ...
A). $ 4a^2 + 10 \, $ B). $ 4a^2 - 10 \, $
C). $ 2a^2 + 5 \, $ D). $ 2a^2 - 5 \, $
E). $ -2a^2 + 5 $

Nomor 5. Soal SBMPTN 2018 MatDas 517/109
Diketahui $ x^2+a^2x+b^2 = 0 $ dengan $ a > 0 $ , $ b > 0 $. Jika jumlah akar persamaan tersebut sama dengan $ -(b+1) $ dan hasil perkalian akar-akarnya $ a^2 + 5 $ , maka nilai $ a+b - ab $ adalah ...
A). $ -2 \, $ B). $ -1 \, $ C). $ 0 \, $ D). $ 1 \, $ E). $ 2 $

Nomor 6. Soal SIMAK UI 2009 MatDas 951/108
Misalkan selisih akar-akar $ x^2 + 2x - a = 0 $ dan selisih akar-akar $ x^2-8x+(a-1)=0 $ bernilai sama, maka perkalian seluruh akar-akar kedua persamaan tersebut adalah .....
A). $ -56 \, $ B). $ -6 \, $ C). $ 2 \, $ D). $ 56 \, $ E). $ 72 $